Streaming Data Patterns | CONFIDENTIAL

STREAMING DATA
PATTERNS

Lambda • Kappa • Event Sourcing • CQRS • Reliability

Version 1.0 | January 2026

Table of Contents

1. Streaming Architecture Patterns
Streaming data architectures enable real-time processing of continuous data flows. Understanding architectural patterns helps design robust, scalable streaming solutions in Fabric.
1.1 Lambda Architecture
Combines batch and stream processing for comprehensive analytics.
Lambda Architecture:

 Source Data
 │
 ├──► Batch Layer (Lakehouse)
 │ └── Historical analysis, ML training
 │
 └──► Speed Layer (Eventstream → KQL)
 └── Real-time queries, dashboards

 Both layers serve the Serving Layer (combined view)
Use Cases
1. Historical + real-time analytics
1. Complex batch computations with live updates
1. Data correction and reprocessing scenarios
1.2 Kappa Architecture
Stream-only architecture treating everything as a stream.
Kappa Architecture:

 Source Data
 │
 └──► Stream Processing (Eventstream)
 │
 ├──► Hot Path (KQL Database)
 │ └── Real-time queries
 │
 └──► Cold Path (Lakehouse)
 └── Long-term storage
Use Cases
1. Simpler architecture preferred
1. Stream replayability available
1. Real-time is primary use case

2. Hot/Warm/Cold Pattern
Organize data by access frequency and latency requirements.
2.1 Data Temperature
	Tier
	Latency
	Storage
	Retention

	Hot
	Sub-second
	KQL Database
	Hours to days

	Warm
	Seconds
	KQL (cached)
	Days to weeks

	Cold
	Minutes
	Lakehouse
	Months to years

2.2 Implementation Pattern
Eventstream Configuration:

 Source: Event Hub
 │
 ├──► KQL Database (Hot)
 │ Table: events_hot
 │ Retention: 7 days
 │
 └──► Lakehouse (Cold)
 Table: events_archive
 Retention: 7 years
2.3 Querying Across Tiers
// Query hot data
events_hot
| where TimeGenerated > ago(1h)

// Query cold data (via shortcut)
external_table('lakehouse_events')
| where EventDate >= datetime(2024-01-01)

// Union for comprehensive view
union events_hot, external_table('lakehouse_events')
| where TimeGenerated > ago(30d)

3. Event Sourcing
Store all changes as a sequence of events rather than current state.
3.1 Event Store Pattern
// Event structure
{
 "eventId": "uuid",
 "eventType": "ClaimSubmitted",
 "aggregateId": "claim-12345",
 "timestamp": "2024-01-15T10:30:00Z",
 "version": 1,
 "data": {
 "memberId": "M001",
 "amount": 1500.00,
 "providerId": "P100"
 }
}
3.2 Event Types
1. ClaimSubmitted: New claim created
1. ClaimValidated: Passed validation rules
1. ClaimAdjudicated: Processing decision made
1. ClaimPaid: Payment issued
1. ClaimDenied: Claim rejected with reason
3.3 Benefits
1. Complete audit trail
1. Time-travel queries
1. Event replay for debugging
1. Rebuild state from events
1. Natural fit for streaming
3.4 KQL for Event Sourcing
// Current state from events
ClaimEvents
| where AggregateId == 'claim-12345'
| order by Version asc
| summarize arg_max(Version, *) by AggregateId

// Event history
ClaimEvents
| where AggregateId == 'claim-12345'
| order by Timestamp asc

4. CQRS Pattern
Command Query Responsibility Segregation separates read and write models.
4.1 CQRS in Fabric
CQRS Architecture:

 Commands (Write) Queries (Read)
 │ │
 ▼ ▼
 Event Hub KQL Database
 │ ▲
 ▼ │
 Eventstream ──────────────────────►│
 │ │
 ▼ │
 Lakehouse (Event Store) ─────────►│
4.2 Write Path
1. Applications send commands to Event Hub
1. Eventstream validates and processes
1. Events stored in Lakehouse (source of truth)
1. Projections updated in KQL Database
4.3 Read Path
1. Queries against optimized KQL projections
1. Pre-aggregated views for common queries
1. Sub-second response times
1. Independent scaling from write path
4.4 Projection Pattern
// Materialize read model from events
.create-or-alter function ProjectClaimSummary() {
 ClaimEvents
 | where EventType in ('ClaimSubmitted', 'ClaimPaid')
 | summarize
 TotalSubmitted = countif(EventType == 'ClaimSubmitted'),
 TotalPaid = countif(EventType == 'ClaimPaid'),
 TotalAmount = sumif(Amount, EventType == 'ClaimPaid')
 by bin(Timestamp, 1h)
}

5. Reliability Patterns
5.1 At-Least-Once Delivery
Default pattern ensuring no data loss.
1. Events may be delivered multiple times
1. Consumer must handle duplicates
1. Use idempotent processing
1. Track processed event IDs
5.2 Idempotency Pattern
// Check for duplicate before processing
let processedEvents = materialize(
 ProcessedEventLog
 | where TimeGenerated > ago(1h)
 | distinct EventId
);
IncomingEvents
| where EventId !in (processedEvents)
| ... // Process new events only
5.3 Dead Letter Queue
Handle failed events for later analysis.
Eventstream Configuration:

 Main Flow
 │
 ├──► Success ──► KQL Database
 │
 └──► Failure ──► Dead Letter Queue
 │
 └──► Alert + Manual Review
5.4 Checkpointing
1. Track processing position in stream
1. Enable restart from failure point
1. Eventstream handles automatically
1. Configure checkpoint interval for balance

6. Windowing Patterns
6.1 Window Types
	Window
	Description
	Use Case

	Tumbling
	Fixed, non-overlapping intervals
	Hourly aggregations

	Hopping
	Fixed, overlapping intervals
	Rolling averages

	Sliding
	Event-triggered windows
	Recent N events

	Session
	Activity-based grouping
	User sessions

6.2 Window Examples
// Tumbling: Count per 5-minute window
| summarize Count = count() by bin(Timestamp, 5m)

// Hopping: 10-min window, 5-min hop
| summarize Avg = avg(Value)
 by bin(Timestamp, 5m), bin(Timestamp, 10m)

// Session: 30-minute timeout
| summarize SessionEvents = count()
 by UserId, bin(Timestamp, 30m)
6.3 Late Arrival Handling
1. Configure watermark for late events
1. Buffer window for out-of-order events
1. Drop or route late arrivals
1. Monitor late arrival metrics

7. Best Practices Summary
7.1 Architecture Selection
1. Lambda: When batch accuracy + real-time speed needed
1. Kappa: When stream-only simplicity preferred
1. Hot/Warm/Cold: For cost optimization by access pattern
1. CQRS: When read/write patterns differ significantly
7.2 Reliability
1. Design for at-least-once with idempotency
1. Implement dead letter queues
1. Configure appropriate checkpointing
1. Monitor processing lag
1. Test failure scenarios
7.3 Performance
1. Pre-aggregate in stream when possible
1. Use appropriate window sizes
1. Partition by high-cardinality keys
1. Monitor throughput and latency
1. Scale partitions for volume
7.4 Operations
1. Implement comprehensive monitoring
1. Set up alerting for anomalies
1. Document event schemas
1. Version events for evolution
1. Plan for replay and recovery

Appendix: Document Information
	Document Title
	Streaming Data Patterns

	Version
	1.0

	Last Updated
	January 2026

Page of
